افكار حل المسائل- د/هناء ابو المجد

(1) No of mole (n) = mass / molar mass
(2) Mole fraction $\left(X_{A}\right)=\left(n_{A}\right) /\left(n_{A}+n_{B}\right), \quad X_{B}=1-X_{A}$
(3) Molarity $(M)=(n$ of solute $) /(V$ of soln (L))
(4) Molality (m) = (n of solute)/ (mass of solvent (Kg))
(5) for any problem, if it says there is a solution contains $\underline{\mathbf{x} \%}$ of solute, this means that: the mass of solute $=x$ grams and the mass of solvent $=(100-x)$ grams
(6) for any problem, if it gives volume of liquid and you need its mass:
use the density to convert the volume to mass (density = mass/volume) او العكس
(7) Hennery's law: Gas in liquid has solubility m_{1} at P_{1}, and solubility m_{2} at P_{2} so $m_{1} / m_{2}=P_{1} / P_{2}$
الضغوط يجب ان يكون لها نفس الوحدة و كذلك الذوبانية
(8) Raoult's law: Two volatile liquids (A, B). V.P of pure $A=P_{A}^{0}$ and V.P of pure $B=P_{B}^{0}$

So, partial pressure of any liquid in solution: $P_{A}=x_{A} . P_{A}^{0}$ and $P_{B}=x_{B} . P_{B}^{0}$

$$
\text { and } P_{\text {total }}\left(\operatorname{or} P_{\text {solution }}\right)=P_{A}+P_{B}=x_{A} \cdot P_{A}^{0}+x_{B} \cdot P_{B}^{0}
$$

(9) if B is non-volatile solute, so $P_{\text {total }}\left(\right.$ or $\left.P_{\text {solution }}\right)=P_{A}=x_{A} . P_{A}^{0}$ the difference between V.P of pure solvent and solution (lowering in V.P) or ($\Delta \mathbf{P}$) $=\mathbf{X}_{\mathbf{B}} . \mathbf{P}^{\mathbf{o}}{ }_{\mathrm{A}}$ (10) Calcuation of B.P (or F.P) of solution:

First calculate molality (m), then apply in: $\Delta \mathbf{T}_{b}=K_{b} . \boldsymbol{m} \mathbf{i}$ or $\Delta \mathbf{T}_{f}=K_{f}, \boldsymbol{m} \mathbf{i}$
Use K_{b} or K_{f} for solvent (from table page 64)
$i=1$ for nonelectrolytic solute, $\quad i=n u m b e r$ of ions for electrolytic solute
Then: B.P (solution) $=\mathrm{B} . \mathrm{P}$ (solvent) $+\Delta \mathrm{T}_{\mathrm{b}} \quad$ and F.P (solution) $=\mathrm{F} . \mathrm{P}$ (solvent) $+\Delta \mathrm{T}_{f}$ (be carfule K_{f} is negative value)
(11) If the molar mass of solute is needed!

From the given, you should calculate (ΔT) from ($T_{\text {solution }}$) ($\left.T_{\text {solvent }}\right)$, then calculte $m=\Delta T /(K . i)$, then calculate $n=(m \times k g$ solvent $)$, then calculate the molar mass of solute $=\left(\mathrm{n} \times\right.$ mass $\left._{\text {solute }}\right)$
(12) If the \% of dissossiation (ionization) of electrolytic solute is need:

From the given you should calculate ($\mathbf{i}_{\text {measured }}$) $=\Delta \mathbf{T} /(\mathrm{K} . \mathrm{m})$
Then divide [($\left.i_{\text {measured }}\right) /$ (number of ions of solute)] $\times 100=$ ionization of that solute

(13) Calculation of osmotic pressure (π)

First calculate (molarity) from equation (1), (3) and convert temperature to absolute $T(K)=t\left({ }^{\circ} \mathrm{C}\right)+273$, then apply in:
$\boldsymbol{\pi}=\mathbf{M} . \mathbf{R} . \mathbf{T}$ (use $\mathrm{R}=0.082 \mathrm{~L} . \mathrm{atm} / \mathrm{mol} . \mathrm{K}$) to obtain the pressure in (atm).

